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Introduction 

Early cancer detection is crucial for both medical and societal reasons, as it 

allows for the possibility of curative treatment when the cancer is still 

localized, as has been covered elsewhere in this special issue. Since the advent 

of symptoms is frequently linked to late-stage incurable disease, it is ideal to 

find early malignancies in asymptomatic individuals. But it's also very evident 

that before early detection paradigms can be totally successful, there are 

significant problems that need to be resolved, including false positives, 

overdetection, overdiagnosis, and overtreatment. Early detection paradigms 

are therefore inherently multistep procedures whose objective is to maximize 

various trade-offs between the diagnosis's sensitivity and specificity at each 

stage. Medical imaging has always been a vital part of pipelines for early 

cancer detection. 

Table 1. Imaging modalities in early detection paradigms. 
Cancer Primary screen(s) Secondary screen(s) 

Lung LDCT/DxCT Endoscopy, PET, Bx 

Breast Mammography/digital US, mpMRI, Bx 

Pancreatic Serum, pancreatic juice CT radiomics, MRI, Bx 

Skin Optical Bx 

GI Optical (OCT) Bx 

Liver/HCC CT/MRI US, MR elastography 

Cervical Optical Bx 

 

Abbreviations: Bx, biopsy; DxCT, diagnostic CT; GI, gastrointestinal; HCC, 

hepatocellular carcinoma; LDCT, low-dose CT; mpMRI, multiparametric MRI; 

OCT, optical coherence tomography; US, ultrasound. 

In contrast to qualitative interpretations of the images, we will argue in this 

review that quantitative analysis of these images using "radiomics" offer 

higher clinical utility to maximize diagnosis and risk assessment. Moreover, 

based on the biology of the early lesion and whether the imaging test is a 

primary or secondary filter, the resulting predictive machine-learning models 

can be adjusted to maximize either sensitivity or specificity. The sensitivity of 
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primary screens should be extremely high, and the specificity of subsequent 

(secondary) screens should increase.  

 

Radiomics 

The process of transforming images into organized, mineable data and then 

using that data for prognosis, diagnosis, prediction, and/or longitudinal 

monitoring is known as radiomics. The idea that "Images are Data" and that 

they represent the underlying pathobiology of the area of interest (ROI; ref. 

3) is the foundation of the entire endeavor. In the last ten years of its existence, 

the field of radiomics has grown rapidly and has recently undergone extensive 

study elsewhere. As seen in Fig. 1, the traditional radiomic analysis process 

extracts image-based features from the lesion and/or adjacent tissues (i.e., 

ROIs). A skilled radiologists can score these aspects meaningfully. 

The computed features are then frequently examined using traditional 
machine learning techniques to create models that predict the relevant 
dependent variable or variables (4). In machine learning, binary outcomes—
such as cancer versus non-cancer, aggressive versus indolent, etc.—are the 
simplest to model and are frequently most pertinent to early detection 
paradigms. Though they typically call for far larger training sets, machine 
learning algorithms can also model more complicated continuous outcomes 
like progression-free survival and time to recurrence. The radiomic feature 
set must be whittled down to a manageable number in order to prevent 
overfitting. This is accomplished by first eliminating unstable and redundant 
features in order of priority, and then selecting the features that provide the 
most information about the desired outcome. 
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Fig. 1. The pipeline for radiomics. Either prospectively or retrospectively, 

patient standard-of-care imaging and data (as available) are collected. The 

ROIs (such as pulmonary nodules) are identified by radiologists or imaging 

scientists, after which they are segmented manually, automatically, or using 

DL algorithms. Following ROI segmentation, radiomic features (purple) are 

extracted. Radiomic features that are correlated, unstable, and 

nonreproducible are removed. In order to create a predictive model that can 

be used for clinical decision-making, the remaining radiomics features are 

combined with pertinent clinical covariates (green). Figure 1 is adapted from 

Tunali et al. 

The biggest obstacle is getting access to large, high-quality datasets that are 

thoroughly annotated with regard to the relevant outcome(s), regardless of 

the radiomic approach and pipeline used. It is impossible to overstate the 

significance of this final requirement. Results such as recurrence, 

progression-free survival, or time to recurrence are among the many radiomic 

studies in the cancer care continuum that are rarely recorded in easily 

accessible structured formats. As a result, these endpoints must be manually 

recorded through chart review, which is time-consuming and demands 

specialized knowledge to correctly extract. However, the crucial outcome 

(cancer vs. noncancer; indolent vs. aggressive) is frequently, or can be, 

recorded in structured formats in an early detection paradigm, which lessens 

some of the restrictions related to data curation.  

 

Imaging Techniques 

US  

US has the unquestionable benefits of being able to image deep body tissues 

in real time and being highly accessible, but its excessive operator 

dependence has been a problem for its early detection schema. A set of 

methods known as "elastography," which can quantitatively image tissue 

stiffness—which is known to increase with hyperplasia—is being used to 

aggressively solve this problem. 

 

X-ray  

Superior tissue penetration is exhibited by high-energy photons, which can 

be absorbed by electron-dense materials like calcium deposits or contrast 

agents. Densities of soft tissues also absorb these, making it possible to 
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distinguish between different types of tissue, such as lung parenchyma, 

muscle, connective tissue, and adipose. 

 

MRI 

The benefit of MRI is that it provides superior soft tissue (and tumor) 

contrast without using ionizing radiation, in addition to having excellent 

tissue penetration. However, motion artifacts are a common result of long 

acquisition times in MRI, particularly in abdominal tissues. Advanced 

compressed sensing techniques, such as MR fingerprinting, are helping to 

mitigate this. Unlike the current minutes, these techniques have the potential 

to render MR images in seconds. The benefit of MRI is that it provides superior 

soft tissue (and tumor) contrast without using ionizing radiation, in addition 

to having excellent tissue penetration. However, motion artifacts are a 

common result of long acquisition times in MRI, particularly in abdominal 

tissues.  

 

Conclusions 

Images are information. Quantitative analyses of these data, as previously 

mentioned, can produce highly predictive models based on a sparse set of 

informative imaging features. Using supervised ROI identification and user-

defined feature extraction, conventional radiomics creates machine learning 

models. Predictive models with extremely high accuracies are the outcome of 

these. Combining the radiomics model with orthogonal clinically derived 

data—such as demographics, histopathology, genomics, and serum 

markers—always improves accuracy. You can find other, more thorough 

reviews of DL and AI in imaging (3–6). 

Both conventional and deeply learned radiomic training sets necessitate 

substantial amounts of carefully selected data. Finding clean results is 

necessary for curation, as they are subsequently applied to classifier tasks. 

This raises two issues: first, it is often necessary to manually define and curate 

outcome data in an organized manner; second, very large datasets are not 

easily accessible. Examples of these data include cancer versus noncancer and 

low grade versus high grade.  

Adopting a large distributed learning network, in which organizations curate 

and store their own data and share algorithms to enhance training, testing, 

and validation, is a potential future solution to address the majority of these 
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problems (11). A more straightforward version of this would be for journals 

to mandate the deposit of code, either uncompiled or compiled, in an easily 

accessible repository. This would allow for the testing and replication of 

promising models at various locations. 

Notably, DL was used in two of the most well-known recent studies to detect 

breast cancer from mammography (49) and to predict lung nodule status 

from LDCT scans (36). With the justification that "code used for training the 

models has a large number of dependencies on internal tooling, 

infrastructure, and hardware, and its release is therefore not feasible," the 

authors declined to share the code in both cases. This is not acceptable, 

especially if public funds were used to create the training data. 
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